Suitability of existing commercial single nucleotide polymorphism chips for genomic studies in Bos indicus cattle breeds and their Bos taurus crosses

J Anim Breed Genet. 2018 Oct;135(6):432-441. doi: 10.1111/jbg.12356. Epub 2018 Aug 16.

Abstract

Bos indicus cattle breeds are genetically distinct from Bos taurus breeds. We examined the performance of three SNP arrays, the Illumina BovineHD BeadChip (777k; Illumina Inc.), the Illumina BovineSNP50 BeadChip (50k) and the GeneSeek 70k Indicus chip (75Ki; GeneSeek) in four B. indicus breeds (Gir, Kankrej, Sahiwal and Red Sindhi) and their B. taurus crosses, along with two B. taurus breeds, Holstein and Jersey. More SNPs on both Illumina SNP chips were monomorphic in B. indicus breeds (average 20.3%-29.3% on the 777k chip, 35.5%-45.5% on the 50k chip) than in Holstein (19.7% on the 777k chip, 17.1% on the 50k chip). The proportion of monomorphic SNPs on the 75Ki chip was much lower, 4% (2.8%-7%) in B. indicus breeds, while it was 33.5% in Holstein. With on average 164,357 heterozygous loci in B. indicus breeds, the 777k SNP chip has sufficient heterozygous loci to design a chip customized for B. indicus breeds. Principal component analysis clearly differentiated B. indicus from B. taurus breeds. Differentiation among B. indicus breeds was only achieved by plotting the third and fifth principal components using 777k genotype data. Admixture analysis showed that many B. indicus animals, previously believed to be of pure origin, are in fact had mixed ancestry. The extent of linkage disequilibrium showed comparatively higher effective population sizes in four B. indicus breeds compared to two B. taurus breeds. The results of admixture analyses show that it is important to assess the genomic composition of a bull before using it in a breeding programme.

MeSH terms

  • Animals
  • Cattle / genetics*
  • Genomics / methods*
  • Genotyping Techniques
  • Hybridization, Genetic*
  • Linkage Disequilibrium
  • Polymorphism, Single Nucleotide*