Fracture Properties and Softening Curves of Steel Fiber-Reinforced Slag-Based Geopolymer Mortar and Concrete

Materials (Basel). 2018 Aug 15;11(8):1445. doi: 10.3390/ma11081445.

Abstract

Adding short steel fibers into slag-based geopolymer mortar and concrete is an effective method to enhance their mechanical properties. The fracture properties of steel fiber-reinforced slag-based geopolymer concrete/mortar (SGC/SGM) and unreinforced control samples were compared through three-point bending (TPB) tests. The influences of steel fiber volume contents (1.0%, 1.5% and 2.0%) on the fracture properties of SGC and SGM were studied. Load-midspan deflection (P-δ) curves and load-crack mouth opening displacement (P-CMOD) curves of the tested beams were recorded. The compressive and splitting tensile strengths were also tested. The fracture energy, flexural strength parameters, and fracture toughness of steel fiber-reinforced SGC and SGM were calculated and analyzed. The softening curves of steel fiber-reinforced SGC and SGM were determined using inverse analysis. The experimental results show that the splitting tensile strength, fracture energy, and fracture toughness are significantly enhanced with fiber incorporation. A strong correlation between the equivalent and residual flexural strengths is also observed. In addition, the trilinear strain-softening curves obtained by inverse analysis predict well of the load-displacement curves recorded from TPB tests.

Keywords: concrete; fracture property; mortar; short steel fibers; slag-based geopolymer; softening curve.