Large Brillouin gain in Germania-doped core optical fibers up to a 98 mol% doping level

Opt Lett. 2018 Aug 15;43(16):4005-4008. doi: 10.1364/OL.43.004005.

Abstract

Germanosilicate glasses are substantial materials in fiber optic technology that have allowed the control of optical properties such as numerical aperture, photosensitivity, dispersion, nonlinearity, and transparency toward mid-infrared. Here, we investigate stimulated Brillouin scattering in single-mode germanosilicate core fibers with increasing GeO2 content from 3.6 mol% up to 98 mol%. Our results reveal a wide Brillouin frequency shift tunability over more than 3 GHz with a strong decrease down to 7.7 GHz at high GeO2 content owing to the low acoustic velocity, while the Brillouin linewidth significantly broadens up to 100 MHz beyond 50 mol% of GeO2 content. In addition, large Brillouin gain up to 6.5 times larger than in standard silica fibers is also reported by means of a pump-probe experiment.