Electronic and optical properties of heterostructures based on transition metal dichalcogenides and graphene-like zinc oxide

Sci Rep. 2018 Aug 13;8(1):12009. doi: 10.1038/s41598-018-30614-3.

Abstract

The structural, electronic, and optical properties of heterostructures formed by transition metal dichalcogenides MX2 (M = Mo, W; X = S, Se) and graphene-like zinc oxide (ZnO) were investigated using first-principles calculations. The interlayer interaction in all heterostructures was characterized by van der Waals forces. Type-II band alignment occurs at the MoS2/ZnO and WS2/ZnO interfaces, together with the large built-in electric field across the interface, suggesting effective photogenerated-charge separation. Meanwhile, type-I band alignment occurs at the MoSe2/ZnO and WSe2/ZnO interfaces. Moreover, all heterostructures exhibit excellent optical absorption in the visible and infrared regions, which is vital for optical applications.