Fe-colloid cotransport through saturated porous media under different hydrochemical and hydrodynamic conditions

Sci Total Environ. 2019 Jan 10:647:494-506. doi: 10.1016/j.scitotenv.2018.08.010. Epub 2018 Aug 2.

Abstract

To investigate the effect of different colloids on Fe migration in saturated porous media under different hydrochemical and hydrodynamic conditions, experiments were performed using colloidal silicon (inorganic) and colloidal humic acid (HA, organic), which are representative of the colloids in groundwater. Transport of Fe with and without colloid was investigated by column experiments using various porous media, colloid concentrations, ionic strengths (ISs), cation valences, and flow rates. The results show that colloidal silicon promotes and colloidal HA inhibits Fe transport, which is mainly because of their different bonding ratio, bonding modes with Fe and opposite surface charges between Fe-colloidal silicon and Fe-colloidal HA. Almost 100% of HA binds to Fe through the deprotonated functional groups, whereas only 13.3% of colloidal silicon binds to Fe, which is by electrostatic forces. Cotransport is also dependent on the hydrochemical and hydrodynamic conditions. For the Fe-colloidal silicon system, increasing the colloid concentration and flow rate, and decreasing the IS enhances Fe transport. Compared with colloidal silicon concentration = 10 mg/L, flow rate = 0.25 mL/min, and IS = 0.05 with CaCl2, a higher colloidal silicon concentration (20 mg/L), a higher flow rate (0.50 mL/min), and a lower IS (<0.0005 M) increase Fe recovery by 1.69%, 94.49% and 38.92%, respectively. Fe migration is also different in different porous media. For the Fe-colloidal HA system, Fe recovery decreases by 81.46% as the colloidal HA concentration increases from 0 to 20 mg/L. The type of porous medium and flow rate conditions have the same effects on Fe-colloidal HA transport as for colloidal silicon, although the electrical conditions have the opposite effect. With increasing IS, Fe-colloidal HA transport is enhanced because of competitive adsorption of the cations and Fe to colloidal HA and the porous medium.

Keywords: Colloidal HA; Colloidal silicon; Column experiments; Cotransport; Fe.