On the shear stability of water-in-water Pickering emulsions stabilized with silica nanoparticles

J Colloid Interface Sci. 2018 Dec 15:532:83-91. doi: 10.1016/j.jcis.2018.07.087. Epub 2018 Jul 21.

Abstract

Hypothesis: Water-in-water (w/w) emulsions are known for their low interfacial tensions (IFT) which makes their stability to shear questionable. This is because of low particle attachment energies, which can be just a few kT. Therefore, emulsions stabilized with larger particles should display greater stability to shear because of larger attachment energies (10-100 or more kT). This is typically not an issue with traditional oil-in-water Pickering emulsions because particle attachment energies are much larger due to higher interfacial tensions, even when very small particles are used.

Experiments: Silica nanoparticles were silanized with 2-(methoxy(polyethyleneoxy)6-9propyl)trimethoxysilane (PEG-silane) to aid in emulsion stabilization. The phase behavior of an aqueous, two-phase system consisting of 20,000 g mol-1 polyethylene glycol (PEG) and magnesium sulfate (MgSO4) was characterized. Optical microscopy was used to characterize the static properties of the particle stabilized emulsions and shear rheology was used to study the stability of emulsions stabilized with 6 nm and 50 nm PEG-silane functionalized particles.

Results: We demonstrated that silica nanoparticles silanized with PEG-silane can stabilize MgSO4 drops to produce MgSO4-in-PEG emulsions. We found emulsions stabilized with 6 wt% particles, regardless of particle size (6 nm or 50 nm), had similar viscosities, emulsion drop size, and were statically stable for one week. Emulsion drops stabilized with 6 wt% 50 nm particles doubled in size after 80 min of shear at 10 s-1 whereas those stabilized with 6 wt% 6 nm particles required only 25 min to double in size. We attribute these differences in doubling time to the larger particle attachment energies associated with the 50 nm particles.

Keywords: Pickering emulsions; Rheology; Shear stability; W/w emulsions.