Learning-Based Adaptive Attitude Control of Spacecraft Formation With Guaranteed Prescribed Performance

IEEE Trans Cybern. 2019 Nov;49(11):4004-4016. doi: 10.1109/TCYB.2018.2857400. Epub 2018 Aug 2.

Abstract

This paper investigates a novel leader-following attitude control approach for spacecraft formation under the preassigned two-layer performance with consideration of unknown inertial parameters, external disturbance torque, and unmodeled uncertainty. First, two-layer prescribed performance is preselected for both the attitude angular and angular velocity tracking errors. Subsequently, a distributed two-layer performance controller is devised, which can guarantee that all the involved closed-loop signals are uniformly ultimately bounded. In order to tackle the defect of statically two-layer performance controller, learning-based control strategy is introduced to serve as an adaptive supplementary controller based on adaptive dynamic programming technique. This enhances the adaptiveness of the statically two-layer performance controller with respect to unexpected uncertainty dramatically, without any prior knowledge of the inertial information. Furthermore, by employing the robustly positively invariant theory, the input-to-state stability is rigorously proven under the designed learning-based distributed controller. Finally, two groups of simulation examples are organized to validate the feasibility and effectiveness of the proposed distributed control approach.