Mutant LKB1 Confers Enhanced Radiosensitization in Combination with Trametinib in KRAS-Mutant Non-Small Cell Lung Cancer

Clin Cancer Res. 2018 Nov 15;24(22):5744-5756. doi: 10.1158/1078-0432.CCR-18-1489. Epub 2018 Aug 1.

Abstract

Purpose: The MEK inhibitor trametinib radiosensitizes KRAS-mutant non-small cell lung cancer (NSCLC) and is being tested clinically with chemoradiation. However, variability in response to trametinib suggests that additional pathways are involved. The mechanism of resistance to trametinib radiosensitization is still unknown.Experimental Design: We used a panel of KRAS-mutant NSCLC cells and tested the radiosensitization effects of trametinib by clonogenic survival assay. Then, we investigated the mechanisms underlying the resistance to the combination therapy through several knockout and overexpression systems. Finally, we validated our findings in syngeneic mouse models in a treatment setting that mimicked the standard of care in the clinic.Results: Radiosensitization by trametinib was effective only in KRAS-LKB1-mutated cells with wild-type (WT) p53, and we found that restoring LKB1 expression in those cells blocked that sensitization. Trametinib and radiotherapy both induced senescence in a p53-dependent manner, but in WT LKB1 cells, the combination also activated the AMPK-autophagy pathway to rescue damaged cells from senescence. LKB1-knockout or autophagy inhibition in WT LKB1 cells potentiated trametinib radiosensitization. In syngeneic animal models of Kras-mutant lung tumors, Lkb1-knockout tumors were resistant to trametinib and chemoradiation given separately, but the combination greatly controlled tumor growth and prolonged survival.Conclusions: The LKB1 mutation in KRAS-mutant NSCLC conferred enhanced radiosensitization in combination with trametinib. The WT LKB1 could activate autophagy through AMPK pathway to induce resistance to the combination of trametinib and radiation. The KRAS-LKB1 mutation could potentially be a biomarker to select patients for trametinib and radiotherapy combination therapy. Clin Cancer Res; 24(22); 5744-56. ©2018 AACR.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • AMP-Activated Protein Kinase Kinases
  • Animals
  • Antineoplastic Agents / pharmacology
  • Antineoplastic Agents / therapeutic use
  • Autophagy
  • Biomarkers, Tumor
  • Carcinoma, Non-Small-Cell Lung / genetics*
  • Carcinoma, Non-Small-Cell Lung / metabolism
  • Carcinoma, Non-Small-Cell Lung / pathology
  • Carcinoma, Non-Small-Cell Lung / therapy
  • Cell Line, Tumor
  • Disease Models, Animal
  • Gene Expression Regulation, Neoplastic
  • Gene Knockdown Techniques
  • Humans
  • Lung Neoplasms / genetics*
  • Lung Neoplasms / metabolism
  • Lung Neoplasms / pathology
  • Lung Neoplasms / therapy
  • Mice
  • Mutation*
  • Protein Serine-Threonine Kinases / genetics*
  • Proto-Oncogene Proteins p21(ras) / genetics*
  • Pyridones / pharmacology*
  • Pyridones / therapeutic use
  • Pyrimidinones / pharmacology*
  • Pyrimidinones / therapeutic use
  • Radiation Tolerance / genetics*
  • Reactive Oxygen Species / metabolism
  • Signal Transduction
  • Xenograft Model Antitumor Assays

Substances

  • Antineoplastic Agents
  • Biomarkers, Tumor
  • KRAS protein, human
  • Pyridones
  • Pyrimidinones
  • Reactive Oxygen Species
  • trametinib
  • Protein Serine-Threonine Kinases
  • STK11 protein, human
  • AMP-Activated Protein Kinase Kinases
  • Proto-Oncogene Proteins p21(ras)