Time-resolved inline digital holography for the study of noncollinear degenerate phase modulation

Opt Lett. 2018 Aug 1;43(15):3481-3484. doi: 10.1364/OL.43.003481.

Abstract

Recent works demonstrated that digital time-resolved holography is the prospective approach to study nonlinear light-matter interaction processes. In this Letter, we present a straightforward inline holographic approach for studying degenerate phase modulation induced by an inclined collimated pump beam in the isotropic sample. The method is based on a minimization of the difference between experimentally acquired data and simulated inline holograms obtained from a numerical model of pump-probe interaction in optical nonlinear media. A sophisticated experimental data processing algorithm is implemented to provide high sensitivity and a signal-to-noise ratio eligible for soft interaction with a collimated pump beam. The integral phase shift determined by our method can be used to estimate the nonlinear refractive index and the relaxation time for material with a low damage threshold. We validated our approach for the case of soda-lime and BK7 glasses.