Screen-printing of flexible semi-transparent electrodes and devices based on silver nanowire networks

Nanotechnology. 2018 Oct 19;29(42):425201. doi: 10.1088/1361-6528/aad74d. Epub 2018 Aug 1.

Abstract

Silver nanowire networks have demonstrated significant potential as semi-transparent electrodes for various applications. However, for their widespread utilisation in devices, upscaled coating technologies such as screen-printing need to be explored and related to this, the formulation of suitable inks is indispensable. This work contributes to this effort by the synthesis of Ag-NW based formulations. The rheological characteristics that are essential for screen-printing are obtained by the addition of hydrophobically modified cellulose. The electrical and optical characteristics of screen-printed features on PET are compared by a Van der Pauw method and UV-vis spectroscopy. Despite the presence of the cellulose additive, the screen-printed electrodes exhibit a transmittance from 92.8% to 57.3% and a sheet resistance down to 27 Ohm sq-1. Based on the percolation theory in composites, a mathematical expression is presented, which allows the in-depth analysis of the resulting opto-electrical properties. The application potential of the nanowire-containing formulations is finally demonstrated by screen-printing functional, flexible electroluminescent devices.