Effects of liquid cultivation on gene expression and phenotype of C. elegans

BMC Genomics. 2018 Jul 31;19(1):562. doi: 10.1186/s12864-018-4948-7.

Abstract

Background: Liquid cultures have been commonly used in space, toxicology, and pharmacology studies of Caenorhabditis elegans. However, the knowledge about transcriptomic alterations caused by liquid cultivation remains limited. Moreover, the impact of different genotypes in rapid adaptive responses to environmental changes (e.g., liquid cultivation) is often overlooked. Here, we report the transcriptomic and phenotypic responses of laboratory N2 and the wild-isolate AB1 strains after culturing P0 worms on agar plates, F1 in liquid cultures, and F2 back on agar plates.

Results: Significant variations were found in the gene expressions between the N2 and AB1 strains in response to liquid cultivation. The results demonstrated that 8-34% of the environmental change-induced transcriptional responses are transmitted to the subsequent generation. By categorizing the gene expressions for genotype, environment, and genotype-environment interactions, we identified that the genotype has a substantial impact on the adaptive responses. Functional analysis of the transcriptome showed correlation with phenotypical changes. For example, the N2 strain exhibited alterations in both phenotype and gene expressions for germline and cuticle in axenic liquid cultivation. We found transcript evidence to approximately 21% of the computationally predicted genes in C. elegans by exposing the worms to environmental changes.

Conclusions: The presented study reveals substantial differences between N2 and AB1 strains for transcriptomic and phenotypical responses to rapid environmental changes. Our data can provide standard controls for future studies for the liquid cultivation of C. elegans and enable the discovery of condition-specific genes.

Keywords: Adaptation; Dormant genes; Reaction norm; ncRNA.

MeSH terms

  • Animals
  • Caenorhabditis elegans / genetics
  • Caenorhabditis elegans / growth & development*
  • Caenorhabditis elegans Proteins / genetics*
  • Culture Media / chemistry*
  • Gene Expression Profiling / methods*
  • Gene Expression Regulation, Developmental
  • High-Throughput Nucleotide Sequencing
  • Phenotype
  • Sequence Analysis, RNA

Substances

  • Caenorhabditis elegans Proteins
  • Culture Media