Electrochemical oxidation of Microcystis aeruginosa using a Ti/RuO2 anode: contributions of electrochemically generated chlorines and hydrogen peroxide

Environ Sci Pollut Res Int. 2018 Oct;25(28):27924-27934. doi: 10.1007/s11356-018-2830-4. Epub 2018 Jul 29.

Abstract

Electrochemical oxidation was proposed as a promising technology for algal control in drinking water treatment. To be effective, the electrogenerated oxidants should have long half-lives and could continually inhibit the growth of algae. In this study, we used the electrochemical system equipped with a Ti/RuO2 anode which focus on generating long half-life chlorines and H2O2. We explored the impact of electrical field and electrogenerated oxidants on algal inhibition, and we investigated the production of electrogenerated reactive species and their contributions to the inhibition of Microcystis aeruginosa (M. aeruginosa) in simulated surface water with low Cl- concentrations (< 18 mg/L). We developed a kinetic model to simulates the concentrations of chlorines and H2O2. The results showed that electrical field and electrogenerated oxidants were both important contributors to algal inhibition during electrochemical oxidation treatment. The Ti/RuO2 anode mainly generates chlorines and H2O2 from Cl- and water. During the electrolysis at current density of 20 mA/cm2, when initial Cl- concentrations increased from 0 to 18 mg/L (0-5.07 × 10-4 mol/L), the chlorines increased from 0 to 3.62 × 10-6 mol/L, and the H2O2 concentration decreased from 3.68 × 10-6 to 1.15 × 10-6 mol/L. Our model made decent predictions of other Cl- concentrations by comparing with experiment data which validated the rationality of this modeling approach. The electrogenerated chlorine species were more effective than H2O2 at an initial Cl- concentration of 18 mg/L.

Keywords: Algae; Algal inhibition; Chlorines; Electrochemical oxidation; Hydrogen peroxide; Kinetic model.

MeSH terms

  • Chlorine / chemistry
  • Chlorine / pharmacology
  • Electrodes
  • Electrolysis / methods*
  • Eutrophication / drug effects
  • Hydrogen Peroxide / chemistry
  • Hydrogen Peroxide / pharmacology
  • Microcystis / growth & development*
  • Models, Theoretical
  • Oxidants / chemistry
  • Oxidants / pharmacology*
  • Oxidation-Reduction
  • Ruthenium Compounds / chemistry*
  • Titanium / chemistry*
  • Water Purification / methods*

Substances

  • Oxidants
  • Ruthenium Compounds
  • ruthenium dioxide
  • Chlorine
  • Hydrogen Peroxide
  • Titanium