Is ventricular sensing always right, when it is left?

Clin Cardiol. 2018 Sep;41(9):1238-1245. doi: 10.1002/clc.23033. Epub 2018 Sep 21.

Abstract

Background: Ventricular sensing in transvenous cardiac implantable electronic devices (CIEDs) occurs conventionally from the right ventricular (RV) channel, though it evolved from epicardial sensing both in pacemakers and implantable cardioverter-defibrillators (ICDs).

Hypothesis: The objective of this study was to observe the reliability of left ventricular (LV) sensing by transvenous leads placed in coronary veins.

Methods: LV leads were used for sensing and arrhythmia detection in clinical situations where placement of an RV lead across the tricuspid valve was either not preferred or not feasible, or RV signal was unsuitable for arrhythmia detection, or in the event of sensing failure of an RV lead under advisory in cardiac resynchronization therapy defibrillator (CRTD) recipients.

Results: Thirty-seven patients had an IS-1 LV lead connected to the RV port of CIEDs (17 pacemakers, 5 cardiac resynchronization therapy pacemaker [CRTP], 2 ICDs, and 13 CRTDs). Along a median 41 (25-67) months follow-up, lead performance remained stable; there were neither undersensing nor oversensing of non-cardiac signals. VT/VF were correctly detected and terminated by ATP and shocks (one and three patients, respectively); no inappropriate arrhythmia detection. Device reprogramming occurred in four CRTD recipients because of transient counting the QRS (short intervals) when paced in LV-only, and in two with T-wave oversensing.

Conclusions: Ventricular sensing by an LV lead is feasible in transvenous devices. Sensing programmability is an unmet need: to fix RV lead sensing issues in cardiac resynchronization therapy (CRT) recipients at no risk of infection (no pocket opening); to avoid interaction with the tricuspid valve; to avoid lead redundancy in the vasculature. Moreover, it will be mandatory owing to the loss of lead interchangeability due to the adoption of DF-4 and quadripolar leads.

Keywords: Arrhythmia detection; Cardiac stimulation; Left ventricular lead; Sensing; Tricuspid regurgitation.

Publication types

  • Observational Study

MeSH terms

  • Aged
  • Aged, 80 and over
  • Arrhythmias, Cardiac / physiopathology
  • Arrhythmias, Cardiac / therapy*
  • Cardiac Resynchronization Therapy Devices*
  • Electrocardiography*
  • Equipment Design
  • Female
  • Follow-Up Studies
  • Forecasting*
  • Heart Conduction System / physiopathology*
  • Heart Ventricles / physiopathology*
  • Humans
  • Male
  • Middle Aged
  • Prospective Studies
  • Reproducibility of Results
  • Treatment Outcome