HIV-1 Integrase-Targeted Short Peptides Derived from a Viral Protein R Sequence

Molecules. 2018 Jul 26;23(8):1858. doi: 10.3390/molecules23081858.

Abstract

HIV-1 integrase (IN) inhibitors represent a new class of highly effective anti-AIDS therapeutics. Current FDA-approved IN strand transfer inhibitors (INSTIs) share a common mechanism of action that involves chelation of catalytic divalent metal ions. However, the emergence of IN mutants having reduced sensitivity to these inhibitors underlies efforts to derive agents that antagonize IN function by alternate mechanisms. Integrase along with the 96-residue multifunctional accessory protein, viral protein R (Vpr), are both components of the HIV-1 pre-integration complex (PIC). Coordinated interactions within the PIC are important for viral replication. Herein, we report a 7-mer peptide based on the shortened Vpr (69⁻75) sequence containing a biotin group and a photo-reactive benzoylphenylalanyl residue, and which exhibits low micromolar IN inhibitory potency. Photo-crosslinking experiments have indicated that the peptide directly binds IN. The peptide does not interfere with IN-DNA interactions or induce higher-order, aberrant IN multimerization, suggesting a mode of action for the peptide that is distinct from clinically used INSTIs and developmental allosteric IN inhibitors. This compact Vpr-derived peptide may serve as a valuable pharmacological tool to identify a potential new pharmacologic site.

Keywords: HIV-1 integrase; inhibitor; photoaffinity probe; viral protein R.

MeSH terms

  • Amino Acid Sequence
  • Gene Products, vpr / chemistry*
  • Gene Products, vpr / metabolism*
  • HIV Infections / virology*
  • HIV Integrase / metabolism*
  • HIV Integrase Inhibitors / chemical synthesis
  • HIV Integrase Inhibitors / chemistry
  • HIV Integrase Inhibitors / pharmacology*
  • HIV-1 / physiology*
  • Magnetic Resonance Spectroscopy
  • Models, Molecular
  • Peptides / chemical synthesis
  • Peptides / chemistry
  • Peptides / pharmacology*
  • Protein Binding
  • Protein Conformation
  • Protein Interaction Domains and Motifs
  • Protein Multimerization

Substances

  • Gene Products, vpr
  • HIV Integrase Inhibitors
  • Peptides
  • HIV Integrase
  • p31 integrase protein, Human immunodeficiency virus 1