Modified cell-permeable JNK inhibitors efficiently prevents islet apoptosis and improves the outcome of islet transplantation

Sci Rep. 2018 Jul 23;8(1):11082. doi: 10.1038/s41598-018-29481-9.

Abstract

We previously reported that treatment with a JNK inhibitory peptide (11R-JNKI) prevents islet apoptosis and enhances the islet function in vivo. In the present study, we explored more efficient JNK inhibitors. The inhibition of the JNK activity by five types of deletion peptides in 11R-JNKI was investigated. One of the peptides, 8R-sJNKI(-9), significantly prevented JNK activation. At a concentration of 1 µM, 8R-sJNKI(-9) inhibited JNK activity similarly to 10 µM 11R-JNKI and the inhibition of the JNK activity by 10 µM 8R-sJNKI(-9) was significantly greater than that by 10 µM 11R-JNK. To evaluate the effects of 8R-sJNKI(-9), porcine islets were cultured with 1 µM of 8R-sJNKI(-9) or 8R-mutant sJNKI(-9) (8R-mJNKI(-9)). After 1 day of culture, the numbers of islets in the 8R-sJNKI(-9)-treated group was significantly higher than that in the 8R-mJNKI(-9)-treated group. After islet transplantation, the blood glucose levels reached the normoglycemic range in 58.3% of streptozotocin-induced diabetic mice in the 8R-sJNKI(-9) group and 0% of the mice in the 8R-mJNKI(-9)-treated group. These data suggest that 8R-sJNKI(-9) inhibits islet apoptosis and improves islet function.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine Triphosphate / metabolism
  • Amino Acid Sequence
  • Animals
  • Apoptosis / drug effects*
  • Diabetes Mellitus, Experimental / pathology
  • Diabetes Mellitus, Experimental / therapy
  • Insulin-Secreting Cells / drug effects
  • Insulin-Secreting Cells / metabolism
  • Islets of Langerhans Transplantation*
  • JNK Mitogen-Activated Protein Kinases / antagonists & inhibitors*
  • JNK Mitogen-Activated Protein Kinases / metabolism
  • Mice
  • Protein Kinase Inhibitors / chemistry
  • Protein Kinase Inhibitors / pharmacology*
  • Swine
  • Treatment Outcome

Substances

  • Protein Kinase Inhibitors
  • Adenosine Triphosphate
  • JNK Mitogen-Activated Protein Kinases