Ooplasmic flow cooperates with transport and anchorage in Drosophila oocyte posterior determination

J Cell Biol. 2018 Oct 1;217(10):3497-3511. doi: 10.1083/jcb.201709174. Epub 2018 Jul 23.

Abstract

The posterior determination of the Drosophila melanogaster embryo is defined by the posterior localization of oskar (osk) mRNA in the oocyte. Defects of its localization result in a lack of germ cells and failure of abdomen specification. A microtubule motor kinesin-1 is essential for osk mRNA posterior localization. Because kinesin-1 is required for two essential functions in the oocyte-transport along microtubules and cytoplasmic streaming-it is unclear how individual kinesin-1 activities contribute to the posterior determination. We examined Staufen, an RNA-binding protein that is colocalized with osk mRNA, as a proxy of posterior determination, and we used mutants that either inhibit kinesin-driven transport along microtubules or cytoplasmic streaming. We demonstrated that late-stage streaming is partially redundant with early-stage transport along microtubules for Staufen posterior localization. Additionally, an actin motor, myosin V, is required for the Staufen anchoring to the actin cortex. We propose a model whereby initial kinesin-driven transport, subsequent kinesin-driven streaming, and myosin V-based cortical retention cooperate in posterior determination.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Biological Transport, Active / physiology
  • Cytoplasm / genetics
  • Cytoplasm / metabolism*
  • Drosophila Proteins / genetics
  • Drosophila Proteins / metabolism*
  • Drosophila melanogaster
  • Kinesins / genetics
  • Kinesins / metabolism
  • Microtubules / genetics
  • Microtubules / metabolism
  • Oocytes / cytology
  • Oocytes / metabolism*
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism*
  • RNA-Binding Proteins / genetics
  • RNA-Binding Proteins / metabolism*

Substances

  • Drosophila Proteins
  • RNA, Messenger
  • RNA-Binding Proteins
  • osk protein, Drosophila
  • stau protein, Drosophila
  • Kinesins