Temperature Dependence of Dissolved Organic Matter Fluorescence

Environ Sci Technol. 2018 Aug 21;52(16):9022-9032. doi: 10.1021/acs.est.8b00643. Epub 2018 Aug 10.

Abstract

The temperature dependence of organic matter fluorescence apparent quantum yields (Φf) was measured for a diverse set of organic matter isolates (i.e., marine aquatic, microbial aquatic, terrestrial aquatic, and soil) in aqueous solution and for whole water samples to determine apparent activation energies ( Ea) for radiationless decay processes of the excited singlet state. Ea was calculated from temperature dependent Φf data obtained by steady-state methods using a simplified photophysical model and the Arrhenius equation. All aquatic-derived isolates, all whole water samples, and one soil-derived fulvic acid isolate exhibited temperature dependent Φf values, with Ea ranging from 5.4 to 8.4 kJ mol-1 at an excitation wavelength of 350 nm. Conversely, soil humic acid isolates exhibited little or no temperature dependence in Φf. Ea varied with excitation wavelength in most cases, typically exhibiting a decrease between 350 and 500 nm. The narrow range of Ea values observed for these samples when compared to literature Ea values for model fluorophores (∼5-30 kJ mol-1) points to a similar photophysical mechanism for singlet excited states nonradiative inactivation across organic matter isolates of diverse source and character. In addition, this approach to temperature dependent fluorescence analysis provides a fundamental, physical basis, in contrast to existing empirical relationships, for correcting online fluorescence sensors for temperature effects.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Fluorescence
  • Humic Substances*
  • Organic Chemicals*
  • Soil
  • Spectrometry, Fluorescence
  • Temperature

Substances

  • Humic Substances
  • Organic Chemicals
  • Soil