Nutty Carbon: Morphology Replicating Hard Carbon from Walnut Shell for Na Ion Battery Anode

ACS Omega. 2017 Jul 31;2(7):3601-3609. doi: 10.1021/acsomega.7b00633. Epub 2017 Jul 13.

Abstract

Efficient Na ion intercalation/deintercalation in the semigraphitic lattice of a hard carbon derived from the walnut shell is demonstrated. High-temperature (1000 °C) pyrolysis of walnut shells under an inert atmosphere yields a hard carbon with a low surface area (59 m2 g-1) and a large interplanar c axis separation of 0.39-0.36 nm as compared to 0.32 nm for graphite, suitable for Na ion intercalation/deintercalation. A stable reversible capacity of 257 mAh g-1 is observed at a current density of 50 mA g-1 for such nutshell-derived carbon (NDC) with an impressive rate performance. No loss of electrochemical performance is observed for high current cycling (100 mA g-1 → 2 A g-1 → 100 mA g-1). Additionally, the NDC shows remarkably stable electrochemical performance up to 300 charge-discharge cycles at 100 mA g-1 with a minimal drop in capacity.