Structural Biology Helps Interpret Variants of Uncertain Significance in Genes Causing Endocrine and Metabolic Disorders

J Endocr Soc. 2018 Jun 13;2(8):842-854. doi: 10.1210/js.2018-00077. eCollection 2018 Aug 1.

Abstract

Context: Variants of uncertain significance (VUSs) lack sufficient evidence, in terms of statistical power or experimental studies, to allow unequivocal determination of their damaging effect. VUSs are a major burden in performing genetic analysis. Although in silico prediction tools are widely used, their specificity is low, thus urgently calling for methods for prioritizing and characterizing variants.

Objective: To assess the frequency of VUSs in genes causing endocrine and metabolic disorders, the concordance rate of predictions from different in silico methods, and the added value of three-dimensional protein structure analysis in discerning and prioritizing damaging variants.

Results: A total of 12,266 missense variants reported in 641 genes causing endocrine and metabolic disorders were analyzed. Among these, 4123 (33.7%) were VUSs, of which 2010 (48.8%) were predicted to be damaging and 1452 (35.2%) were predicted to be tolerated according to in silico tools. A total of 5383 (87.7%) of 6133 disease-causing variants and 823 (55.8%) of 1474 benign variants were correctly predicted. In silico predictions were noninformative in 5.7%, 14.4%, and 16% of damaging, benign, and VUSs, respectively. A damaging effect on 3D protein structure was present in 240 (30.9%) of predicted damaging and 40 (9.7%) of predicted tolerated VUSs (P < 0.001). An in-depth analysis of nine VUSs occurring in TSHR, LDLR, CASR, and APOE showed that they greatly affect protein stability and are therefore strong candidates for disease.

Conclusions: In our dataset, we confirmed the high sensitivity but low specificity of in silico predictions tools. 3D protein structural analysis is a compelling tool for characterizing and prioritizing VUSs and should be a part of genetic variant analysis.

Keywords: disease; genetic variants of uncertain significance; precision medicine; protein structure.