The lentiviral-mediated Nurr1 genetic engineering mesenchymal stem cells protect dopaminergic neurons in a rat model of Parkinson's disease

Am J Transl Res. 2018 Jun 15;10(6):1583-1599. eCollection 2018.

Abstract

Nuclear receptor-related factor 1 (Nurr1) has a crucial role in the development and maturation of mesencephalic dopamine (DA) neurons and also plays a protective role in maintenance of DA neurons by inhibiting the activation of microglia and astrocyte. Moreover, the mutations in Nurr1 gene are associated with familial Parkinson's disease (PD), suggested that Nurr1 modulation is a potential therapeutic target for PD. This study examines the therapeutic effects of transplantation of Nurr1 gene-modified bone marrow mesenchymal stem cells (MSCs) on 6-hydroxydopamine (6-OHDA)-induced PD rat models. MSCs were transduced with lentivirus expressing Nurr1 gene and then intrastriatally transplanted into PD rats. Our results showed that Nurr1 gene-modified MSCs overexpress and secrete Nurr1 protein in vitro and also survive and migrate in the brain. Four weeks after transplantation Nurr1 gene-modified MSCs dramatically ameliorated the abnormal behavior of PD rats and increased the numbers of tyrosine hydroxylase (TH)-positive cells in the substantia nigra (SN) and TH-positive fibers in the striatum, inhibited the activation of glial cells, and reduced the expression of inflammatory factors in the SN. Taken together, these findings suggest that intrastriatal transplantation of lentiviral vector mediated Nurr1 gene-modified MSCs has notable therapeutic effect for PD rats.

Keywords: Mesenchymal stem cells; Nurr1; Parkinson’s disease; gene therapy; intrastriatal transplantation; lentivirus vectors.