Photocured Materials with Self-Healing Function through Ionic Interactions for Flexible Electronics

ACS Appl Mater Interfaces. 2018 Aug 8;10(31):26694-26704. doi: 10.1021/acsami.8b08884. Epub 2018 Jul 25.

Abstract

Photocured materials with self-healing function have the merit of long lifetime and environmentally benign preparation process and thus find potential applications in various fields. Herein, a novel imidazolium-containing photocurable monomer, (6-(3-(3(2-hydroxyethyl)-1 H-imidazol-3-ium bromide)propanoyloxy)hexyl acrylate, IM-A), was designed and synthesized. Self-healing polymers were prepared by fast photocuring with IM-A, isobornyl acrylate, 2-(2-ethoxyethoxy)ethyl acrylate, and 2-hydroxyethyl acrylate as the monomers. The mechanical and self-healing properties of the polymers were tuned by varying the contents of IM-A and other monomers. The as-prepared self-healing polymer IB7-IM5 exhibited a tensile strength of 3.1 MPa, elongation at break of 205%, healing efficiency of 93%, and a wide healing temperature range from room temperature to 120 °C. The self-healing polymer was also employed as a flexible substrate to fabricate a flexible electronic device, which could be healed and completely restore its conductivity after the device was damaged.

Keywords: flexible electronics; imidazolium; ionic interactions; photocuring; self-healing.