Bacterial Endospores as Phage Genome Carriers and Protective Shells

Appl Environ Microbiol. 2018 Aug 31;84(18):e01186-18. doi: 10.1128/AEM.01186-18. Print 2018 Sep 15.

Abstract

Bacterial endospores can serve as phage genome protection shells against various environmental stresses to enhance microbial control applications. The genomes of polyvalent lytic Bacillus phages PBSC1 and PBSC2, which infect both B. subtilis subsp. subtilis and B. cereus NRS 248, were incorporated into B. subtilis endospores (without integration into the host chromosome). When PBSC1 and PBSC2 were released from germinating endospores, they significantly inhibited the growth of the targeted opportunistic pathogen B. cereus Optimal endospore entrapment was achieved when phages were introduced to the fast-sporulating prespores at a multiplicity of infection of 1. Longer endospore maturation (48 h versus 24 h) increased both spore yield and efficiency of entrapment. Compared with free phages, spore-protected phage genomes showed significantly higher resistance toward high temperatures (60 to 80°C), extreme pH (pH 2 or pH 12), and copper ions (0.1 to 10 mg/liter). Endospore germination is inducible by low concentrations of l-alanine or by a germinant mixture (l-asparagine, d-glucose, d-fructose, and K+) to trigger the expression, assembly, and consequent release of phage particles within 60 to 90 min. Overall, the superior resiliency of polyvalent phages protected by endospores might enable nonrefrigerated phage storage and enhance phage applications after exposure to adverse environmental conditions.IMPORTANCE Bacteriophages are being considered for the control of multidrug-resistant and other problematic bacteria in environmental systems. However, the efficacy of phage-based microbial control is limited by infectivity loss during phage delivery and/or storage. Here, we exploit the pseudolysogenic state of phages, which involves incorporation of their genome into bacterial endospores (without integration into the host chromosome), to enhance survival in unfavorable environments. We isolated polyvalent (broad-host-range) phages that efficiently infect both benign and opportunistically pathogenic Bacillus strains and encapsulated the phage genomes in B. subtilis endospores to significantly improve resistance to various environmental stressors. Encapsulation by spores also significantly enhanced phage genome viability during storage. We also show that endospore germination can be induced on demand with nutrient germinants that trigger the release of active phages. Overall, we demonstrate that encapsulation of polyvalent phage genomes into benign endospores holds great promise for broadening the scope and efficacy of phage biocontrol.

Keywords: Bacillus cereus; bacteriophage; endospore; microbial control; phage protection; stressors.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Bacillus Phages / chemistry
  • Bacillus Phages / genetics*
  • Bacillus Phages / growth & development
  • Bacillus cereus / genetics
  • Bacillus cereus / growth & development
  • Bacillus cereus / virology*
  • Bacillus subtilis / genetics
  • Bacillus subtilis / growth & development
  • Bacillus subtilis / virology*
  • Genome, Viral*
  • Hot Temperature
  • Hydrogen-Ion Concentration
  • Spores, Bacterial / chemistry
  • Spores, Bacterial / genetics
  • Spores, Bacterial / growth & development
  • Spores, Bacterial / virology*