Zebrafish as a Model for Drug Screening in Genetic Kidney Diseases

Front Pediatr. 2018 Jun 28:6:183. doi: 10.3389/fped.2018.00183. eCollection 2018.

Abstract

Genetic disorders account for a wide range of renal diseases emerging during childhood and adolescence. Due to the utilization of modern biochemical and biomedical techniques, the number of identified disease-associated genes is increasing rapidly. Modeling of congenital human disease in animals is key to our understanding of the biological mechanism underlying pathological processes and thus developing novel potential treatment options. The zebrafish (Danio rerio) has been established as a versatile small vertebrate organism that is widely used for studying human inherited diseases. Genetic accessibility in combination with elegant experimental methods in zebrafish permit modeling of human genetic diseases and dissecting the perturbation of underlying cellular networks and physiological processes. Beyond its utility for genetic analysis and pathophysiological and mechanistic studies, zebrafish embryos, and larvae are amenable for phenotypic screening approaches employing high-content and high-throughput experiments using automated microscopy. This includes large-scale chemical screening experiments using genetic models for searching for disease-modulating compounds. Phenotype-based approaches of drug discovery have been successfully performed in diverse zebrafish-based screening applications with various phenotypic readouts. As a result, these can lead to the identification of candidate substances that are further examined in preclinical and clinical trials. In this review, we discuss zebrafish models for inherited kidney disease as well as requirements and considerations for the technical realization of drug screening experiments in zebrafish.

Keywords: automated microscopy; compound screening; drug screening; genetic kidney disease; high-content; high-throughput; zebrafish.

Publication types

  • Review