Tough Magnetic Chitosan Hydrogel Nanocomposites for Remotely Stimulated Drug Release

Biomacromolecules. 2018 Aug 13;19(8):3351-3360. doi: 10.1021/acs.biomac.8b00636. Epub 2018 Jul 23.

Abstract

As one of important biomaterials for localized drug delivery system, chitosan hydrogel still suffer several challenges, including poor mechanical properties, passive drug release behavior and lack of remote stimuli response. To address these challenges, a facile in situ hybridization method was reported for fabricate tough magnetic chitosan hydrogel (MCH), which remotely switched drug release from passive release to pulsatile release under a low frequency alternating magnetic field (LAMF). The in situ hybridization method avoided the aggregation of magnetic nanoparticles (MNPs) in hydrogel, which simultaneously brings 416% and 265% increase in strength and elastic modulus, respectively. The mechanical property enhancement was contributed by the physical crosslinking of in situ synthesized MNPs. When a LAMF with 15 min ON-15 min OFF cycles was applied to MCH, the fraction release showed zigzag shape and pulsatile release behavior with quick response. The cumulative release and fraction release of drug from MCH were improved by 67.2% and 31.9%, respectively. MTT results and cell morphology indicated that the MCH have excellent biocompatibility and no acute adverse effect on MG-63 cells. The developed tough MCH system holds great potential for applications in smart drug release system with noninvasive characteristics and magnetic field stimulated drug release behavior.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Line, Tumor
  • Chitosan / analogs & derivatives*
  • Drug Liberation*
  • Humans
  • Hydrogel, Polyethylene Glycol Dimethacrylate / chemistry*
  • Magnetic Fields
  • Magnetite Nanoparticles / chemistry*
  • Nanocomposites / chemistry*

Substances

  • Magnetite Nanoparticles
  • Hydrogel, Polyethylene Glycol Dimethacrylate
  • Chitosan