Real-Time Neuromorphic System for Large-Scale Conductance-Based Spiking Neural Networks

IEEE Trans Cybern. 2019 Jul;49(7):2490-2503. doi: 10.1109/TCYB.2018.2823730. Epub 2018 Apr 19.

Abstract

The investigation of the human intelligence, cognitive systems and functional complexity of human brain is significantly facilitated by high-performance computational platforms. In this paper, we present a real-time digital neuromorphic system for the simulation of large-scale conductance-based spiking neural networks (LaCSNN), which has the advantages of both high biological realism and large network scale. Using this system, a detailed large-scale cortico-basal ganglia-thalamocortical loop is simulated using a scalable 3-D network-on-chip (NoC) topology with six Altera Stratix III field-programmable gate arrays simulate 1 million neurons. Novel router architecture is presented to deal with the communication of multiple data flows in the multinuclei neural network, which has not been solved in previous NoC studies. At the single neuron level, cost-efficient conductance-based neuron models are proposed, resulting in the average utilization of 95% less memory resources and 100% less DSP resources for multiplier-less realization, which is the foundation of the large-scale realization. An analysis of the modified models is conducted, including investigation of bifurcation behaviors and ionic dynamics, demonstrating the required range of dynamics with a more reduced resource cost. The proposed LaCSNN system is shown to outperform the alternative state-of-the-art approaches previously used to implement the large-scale spiking neural network, and enables a broad range of potential applications due to its real-time computational power.