Rapid Self-Recoverable Hydrogels with High Toughness and Excellent Conductivity

ACS Appl Mater Interfaces. 2018 Aug 8;10(31):26610-26617. doi: 10.1021/acsami.8b06567. Epub 2018 Jul 25.

Abstract

Hydrogels as soft and wet materials have attracted much attention in sensing and flexible electronics. However, traditional hydrogels are fragile or have unsatisfactory recovery capability, which largely limit their applications. Here, a novel hydrogen bond based sulfuric acid-poly(acrylic acid) (PAA)/poly(vinyl alcohol) physical hydrogel is developed for addressing the above drawbacks. Sulfuric acid serves two functions: one is to inhibit the ionization of carboxyl groups from PAA chains to form more hydrogen bonds and the other is to provide conductive ions to promote conductivity of hydrogel. Consequently, the hydrogel obtains comprehensive mechanical properties, including extremely rapid self-recovery (strain = 1, instantly self-recover; strain = 20, self-recover within 10 min), high fracture strength (3.1 MPa), and high toughness (18.7 MJ m-3). In addition, we demonstrate this hydrogel as a stretchable ionic cable and pressure sensor to exhibit stable operation after repeated loadings. This work provides a new concept to synthesize physical hydrogels, which will hopefully expand applications of hydrogel in stretchable electronics.

Keywords: conductivity; high strength; high toughness; hydrogel; pressure sensor; self-recovery.