Influence of a self-regulated cognitive dual task on time to failure and complexity of submaximal isometric force control

Eur J Appl Physiol. 2018 Sep;118(9):2021-2027. doi: 10.1007/s00421-018-3936-6. Epub 2018 Jul 10.

Abstract

Purpose: To determine the effects of performing a self-regulated cognitive dual task on time to failure and neuromuscular force control during submaximal isometric contractions.

Methods: Fifteen young sedentary males performed isometric contractions at 50% of each individual's maximal voluntary contraction (MVC) under single-task (without cognitive load) and dual-task (with self-regulated mathematical task) conditions. Force signal complexity and biceps brachialis muscle activity were determined at the start, middle, and end of each trial. The slope of the linear regression of median frequency determined the rate of muscle fatigue. Force-task error was established as any amplitude percentage greater or less than 50% MVC.

Results: The dual-task condition resulted in a 42 s longer time to failure than the single-task condition. EMG amplitude did not differ between conditions. The rate of muscle fatigue was higher in the single-task (- 0.35%/s) than the dual-task (- 0.2%/s) condition. Force signal complexity was, on average, 22% lower in the dual-task condition. The dual-task condition, as compared to the single-task condition, elicited a higher rate of force-task error below (6.37 versus 4.76%) and over (2.11 versus 1.68%) the force threshold.

Conclusion: The dual-task condition resulted in a longer time to failure and decreased motor output complexity and fatigue rate when performing a submaximal force task. As the dual task also increased the force-task error, we suggest cognitive dual tasks as a possible strategy for delaying fatigue in sedentary young males when exerting submaximal isometric force, contributing to neuromuscular training when error in force control can be ignored.

Keywords: Dissociation; Fatigue; Motor control; Muscle activity; Strength.

MeSH terms

  • Adult
  • Cognition / physiology*
  • Elbow / physiology
  • Electromyography / methods
  • Fatigue / physiopathology
  • Humans
  • Isometric Contraction / physiology*
  • Male
  • Muscle Contraction / physiology*
  • Muscle Fatigue / physiology
  • Muscle, Skeletal / physiology*
  • Physical Endurance / physiology
  • Physical Exertion / physiology
  • Torque
  • Young Adult