Cholesterol-Bearing Fluorescent G-Quadruplex Potassium Probes for Anchoring at the Langmuir Monolayer and Cell Membrane

Sensors (Basel). 2018 Jul 9;18(7):2201. doi: 10.3390/s18072201.

Abstract

The purpose of the present work was to design, synthesize and spectrally characterize cholesterol-anchored fluorescent oligonucleotide probes (Ch(F-TBA-T), Ch(py-TBA-py)), based on G-quadruplexes, which were able to incorporate into a lipid structure (Langmuir monolayer, living cell membrane). The probes, based on the thrombin-binding aptamer (TBA) sequence, were labeled with fluorescent dyes which enabled simultaneous monitoring of the formation of G-quadruplex structures and visualization of probe incorporation into the cellular membrane. The combinations of fluorophores used included fluorescence resonance energy transfer (FRET) and excimer emission approaches. The structural changes of the probes upon binding with K⁺ or Na⁺ ions were monitored with fluorescence techniques. These systems showed a very high binding preference for K⁺ over Na⁺ ions. The use of confocal fluorescence microscopy indicated successful anchoring of the cholesterol-bearing fluorescent probes to the living cell membrane. These structurally simple cholesterol-based fluorescent probes have good potential for opening up new and exciting opportunities in the field of biosensors; e.g., in vivo detection of K⁺ ions.

Keywords: FRET; G-quadruplex; Langmuir monolayer; cholesterol anchor; living cell membrane; potassium sensing; pyrene.

MeSH terms

  • Aptamers, Nucleotide / chemistry
  • Cell Membrane / chemistry*
  • Cell Membrane / metabolism
  • Cholesterol / chemistry*
  • Cholesterol / metabolism
  • Fluorescence Resonance Energy Transfer*
  • Fluorescent Dyes / analysis
  • Fluorescent Dyes / chemistry*
  • G-Quadruplexes*
  • HeLa Cells
  • Humans
  • Potassium / analysis*
  • Potassium / metabolism*

Substances

  • Aptamers, Nucleotide
  • Fluorescent Dyes
  • Cholesterol
  • Potassium