Research on a Fast-Response Thermal Conductivity Sensor Based on Carbon Nanotube Modification

Sensors (Basel). 2018 Jul 7;18(7):2191. doi: 10.3390/s18072191.

Abstract

Aiming at solving the slow-response problem of traditional bead-type thermal conductivity gas sensors, a fast-response thermal conductivity gas sensor can be made by using multiwalled carbon nanotubes (MWNTs), combined with the technology of carrier modification, to modify the performance of the sensor carrier. The carrier material, granular nanoscale γ-Al₂O₃/ZrO₂, was synthesized by chemical precipitation, and its particle size was found to be 50⁻70 nm through SEM. After the carrier material was wet-incorporated into carbon nanotubes, the composite carrier γ-Al₂O₃/ZrO₂/MWNTs was obtained. The results show that the designed thermal conductivity sensor has a fast response to methane gas, with a 90% response time of 7 s and a recovery time of 16 s. There is a good linear relationship between the sensor output and CH₄ gas concentration, with an average sensitivity of 1.15 mV/1% CH₄. Thus, the response speed of a thermal conductivity sensor can be enhanced by doping carbon nanotubes into γ-Al₂O₃/ZrO₂.

Keywords: Al2O3; carbon nanotubes; gas sensor; thermal conductivity.