Clusters of DCX+ cells "trapped" in the subcortical white matter of early postnatal Cetartiodactyla (Tursiops truncatus, Stenella coeruloalba and Ovis aries)

Brain Struct Funct. 2018 Nov;223(8):3613-3632. doi: 10.1007/s00429-018-1708-z. Epub 2018 Jul 6.

Abstract

The cytoskeletal protein doublecortin (DCX) is a marker for neuronal cells retaining high potential for structural plasticity, originating from both embryonic and adult neurogenic processes. Some of these cells have been described in the subcortical white matter of neonatal and postnatal mammals. In mice and humans it has been shown they are young neurons migrating through the white matter after birth, reaching the cortex in a sort of protracted neurogenesis. Here we show that DCX+ cells in the white matter of neonatal and young Cetartiodactyla (dolphin and sheep) form large clusters which are not newly generated (in sheep, and likely neither in dolphins) and do not reach the cortical layers, rather appearing "trapped" in the white matter tissue. No direct contact or continuity can be observed between the subventricular zone region and the DCX+ clusters, thus indicating their independence from any neurogenic source (in dolphins further confirmed by the recent demonstration that periventricular neurogenesis is inactive since birth). Cetartiodactyla include two orders of large-brained, relatively long-living mammals (cetaceans and artiodactyls) which were recognized as two separate monophyletic clades until recently, yet, despite the evident morphological distinctions, they are monophyletic in origin. The brain of Cetartiodactyla is characterized by an advanced stage of development at birth, a feature that might explain the occurrence of "static" cell clusters confined within their white matter. These results further confirm the existence of high heterogeneity in the occurrence, distribution and types of structural plasticity among mammals, supporting the emerging view that multiple populations of DCX+, non-newly generated cells can be abundant in large-brained, long-living species.

Keywords: Brain development; Comparative neuroscience; Doublecortin; Immature neurons; Mammals; Structural plasticity.

MeSH terms

  • Anatomy, Comparative
  • Animals
  • Bottle-Nosed Dolphin
  • Brain / cytology*
  • Brain / growth & development*
  • Brain / metabolism
  • Cell Movement
  • Cell Proliferation
  • Doublecortin Domain Proteins
  • Doublecortin Protein
  • Female
  • Male
  • Microtubule-Associated Proteins / metabolism*
  • Neurogenesis
  • Neuropeptides / metabolism*
  • Sheep, Domestic
  • Species Specificity
  • Stenella
  • White Matter / cytology*
  • White Matter / growth & development*
  • White Matter / metabolism

Substances

  • DCX protein, human
  • Dcx protein, mouse
  • Doublecortin Domain Proteins
  • Doublecortin Protein
  • Microtubule-Associated Proteins
  • Neuropeptides