Zoledronic acid exacerbates inflammation through M1 macrophage polarization

Inflamm Regen. 2018 Jun 23:38:16. doi: 10.1186/s41232-018-0074-9. eCollection 2018.

Abstract

Background: Zoledronic acid (Zol), one of the bisphosphonates, is frequently utilized for the treatment of osteoporosis and bone metastasis. However, the onset of medication-related osteonecrosis of the jaw (MRONJ) following dental treatments has become a serious issue. We reported previously that osteonecrosis can be induced by Zol and lipopolysaccharide (LPS) in vivo, suggesting the involvement of Zol in inflammation. Macrophages are divided into M1/M2 macrophages. M1 macrophages are involved in the induction and exacerbation of inflammation and express proinflammatory mediators including interleukin (IL)-1. On the other hand, M2 macrophages are associated with anti-inflammatory reactions through the expression of anti-inflammatory cytokines, such as IL-10. In the present study, we clarified the effects of Zol on M1/M2 macrophage polarization in vitro.

Methods: Human monocytic THP-1 cells were polarized to macrophage-like cells by phorbol 12-myristate 13-acetate (PMA), and, after culturing for an additional 24 h with or without Zol, then polarized to M1 macrophages by LPS or to M2 macrophages by IL-4. Cell viability was examined by the WST-8 assay. Gene expression was confirmed by the real-time polymerase chain reaction. Protein expression was detected by western blotting and enzyme-linked immunosorbent assays.

Results: Zol treatment upregulated the expression of IL-1β mRNA and protein through NLRP3 inflammasome activation in LPS-treated THP-1 cells. Zol treatment did not affect the expression of IL-10, IL-1ra, or CD206 in IL-4-treated THP-1 cells.

Conclusions: Zol enhanced LPS-induced M1, but not M2, macrophage polarization through the NLRP3 inflammasome-dependent pathway, resulting in the production of inflammatory cytokines in THP-1 cells.

Keywords: Inflammation; Macrophage polarization; Zoledronic acid.