β-Cyclodextrin as a Precursor to Holey C-Doped g-C3 N4 Nanosheets for Photocatalytic Hydrogen Generation

ChemSusChem. 2018 Aug 22;11(16):2681-2694. doi: 10.1002/cssc.201801003. Epub 2018 Aug 7.

Abstract

A green, template-free and easy-to-implement strategy was developed to access holey g-C3 N4 (GCN) nanosheets doped with carbon. The protocol involves heating dicyandiamide with β-cyclodextrin (βCD) prior to polymerization. The local symmetry of the GCN skeleton is broken, yielding CxGCN (x corresponds to the initial amount of βCD used) with pores and a distorted structure. The electronic, emission, optical and textural properties of the best-performing material, C2GCN, were significantly modified as compared to bulk GCN. The spectroscopic and luminescent features of C2GCN show the characteristic π-π* electronic transition of GCN, accompanied by much stronger n-π* electronic transitions owing to the porous and distorted network. These new electronic transitions, along with the presence of additional carbon synergistically contributed to enhanced visible light absorption and restrained recombination of electron-hole pairs. Steady-state and time-resolved photoluminescence showed an effective quench of the fluorescence emission, accompanied by a decrease of fluorescence lifetime of C2GCN (2.20 ns) in comparison with GCN (5.85 ns), owing to the delocalization of electron and holes to new recombination centers. The photocatalytic activity of C2GCN was attributed to efficient charge carrier separation and improved visible-light absorbing ability. As result, C2GCN exhibited ∼5 times higher photocatalytic H2 generation under visible light than bulk GCN.

Keywords: charge carrier separation; distorted structure; graphitic carbon nitride; photocatalysis; water splitting.