Physiological and Phylogenetic Characterization of Rhodotorula diobovata DSBCA06, a Nitrophilous Yeast

Biology (Basel). 2018 Jun 30;7(3):39. doi: 10.3390/biology7030039.

Abstract

Agriculture and intensive farming methods are the greatest cause of nitrogen pollution. In particular, nitrification (the conversion of ammonia to nitrate) plays a role in global climate changes, affecting the bio-availability of nitrogen in soil and contributing to eutrophication. In this paper, the Rhodotorula diobovata DSBCA06 was investigated for growth kinetics on nitrite, nitrate, or ammonia as the sole nitrogen sources (10 mM). Complete nitrite removal was observed in 48 h up to 10 mM initial nitrite. Nitrogen was almost completely assimilated as organic matter (up to 90% using higher nitrite concentrations). The strain tolerates and efficiently assimilates nitrite at concentrations (up to 20 mM) higher than those previously reported in literature for other yeasts. The best growth conditions (50 mM buffer potassium phosphate pH 7, 20 g/L glucose as the sole carbon source, and 10 mM nitrite) were determined. In the perspective of applications in inorganic nitrogen removal, other metabolic features relevant for process optimization were also evaluated, including renewable sources and heavy metal tolerance. Molasses, corn, and soybean oils were good substrates, and cadmium and lead were well tolerated. Scale-up tests also revealed promising features for large-scale applications. Overall, presented results suggest applicability of nitrogen assimilation by Rhodotorula diobovata DSBCA06 as an innovative tool for bioremediation and treatment of wastewater effluents.

Keywords: bioremediation; eutrophication; nitrite; nitrogen; wastewater.