Biochemical and Spectroscopic Characterizations of a Hybrid Light-Harvesting Reaction Center Core Complex

Biochemistry. 2018 Jul 31;57(30):4496-4503. doi: 10.1021/acs.biochem.8b00644. Epub 2018 Jul 17.

Abstract

The light-harvesting 1 reaction center (LH1-RC) complex from Thermochromatium tepidum exhibits a largely red-shifted LH1 Q y absorption at 915 nm due to binding of Ca2+, resulting in an "uphill" energy transfer from LH1 to the reaction center (RC). In a recent study, we developed a heterologous expression system (strain TS2) to construct a functional hybrid LH1-RC with LH1 from Tch. tepidum and the RC from Rhodobacter sphaeroides [Nagashima, K. V. P., et al. (2017) Proc. Natl. Acad. Sci. U. S. A. 114, 10906]. Here, we present detailed characterizations of the hybrid LH1-RC from strain TS2. Effects of metal cations on the phototrophic growth of strain TS2 revealed that Ca2+ is an indispensable element for its growth, which is also true for Tch. tepidum but not for Rba. sphaeroides. The thermal stability of the TS2 LH1-RC was strongly dependent on Ca2+ in a manner similar to that of the native Tch. tepidum, but interactions between the heterologous LH1 and RC became relatively weaker in strain TS2. A Fourier transform infrared analysis demonstrated that the Ca2+-binding site of TS2 LH1 was similar but not identical to that of Tch. tepidum. Steady-state and time-resolved fluorescence measurements revealed that the uphill energy transfer rate from LH1 to the RC was related to the energy gap in an order of Rba. sphaeroides, Tch. tepidum, and strain TS2; however, the quantum yields of LH1 fluorescence did not exhibit such a correlation. On the basis of these findings, we discuss the roles of Ca2+, interactions between LH1 and the RC from different species, and the uphill energy transfer mechanisms.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacterial Proteins / chemistry
  • Bacterial Proteins / metabolism*
  • Binding Sites
  • Calcium / metabolism
  • Chromatiaceae / chemistry
  • Chromatiaceae / metabolism*
  • Energy Transfer
  • Light-Harvesting Protein Complexes / chemistry
  • Light-Harvesting Protein Complexes / metabolism*
  • Protein Aggregates
  • Protein Binding
  • Protein Stability
  • Rhodobacter sphaeroides / chemistry
  • Rhodobacter sphaeroides / metabolism*

Substances

  • Bacterial Proteins
  • Light-Harvesting Protein Complexes
  • Protein Aggregates
  • Calcium