A Web Geographic Information System to share data and explorative analysis tools: The application to West Nile disease in the Mediterranean basin

PLoS One. 2018 Jun 27;13(6):e0196429. doi: 10.1371/journal.pone.0196429. eCollection 2018.

Abstract

Background: In the last decades an increasing number of West Nile Disease cases was observed in equines and humans in the Mediterranean basin and surveillance systems are set up in numerous countries to manage and control the disease. The collection, storage and distribution of information on the spread of the disease becomes important for a shared intervention and control strategy. To this end, a Web Geographic Information System has been developed and disease data, climatic and environmental remote sensed data, full genome sequences of selected isolated strains are made available. This paper describes the Disease Monitoring Dashboard (DMD) web system application, the tools available for the preliminary analysis on climatic and environmental factors and the other interactive tools for epidemiological analysis.

Methods: WNV occurrence data are collected from multiple official and unofficial sources. Whole genome sequences and metadata of WNV strains are retrieved from public databases or generated in the framework of the Italian surveillance activities. Climatic and environmental data are provided by NASA website. The Geographical Information System is composed by Oracle 10g Database and ESRI ArcGIS Server 10.03; the web mapping client application is developed with the ArcGIS API for Javascript and Phylocanvas library to facilitate and optimize the mash-up approach. ESRI ArcSDE 10.1 has been used to store spatial data.

Results: The DMD application is accessible through a generic web browser at https://netmed.izs.it/networkMediterraneo/. The system collects data through on-line forms and automated procedures and visualizes data as interactive graphs, maps and tables. The spatial and temporal dynamic visualization of disease events is managed by a time slider that returns results on both map and epidemiological curve. Climatic and environmental data can be associated to cases through python procedures and downloaded as Excel files.

Conclusions: The system compiles multiple datasets through user-friendly web tools; it integrates entomological, veterinary and human surveillance, molecular information on pathogens and environmental and climatic data. The principal result of the DMD development is the transfer and dissemination of knowledge and technologies to develop strategies for integrated prevention and control measures of animal and human diseases.

MeSH terms

  • Climate*
  • Databases, Factual*
  • Epidemiological Monitoring*
  • Geographic Information Systems*
  • Humans
  • Internet*
  • Mediterranean Region
  • West Nile Fever / epidemiology*

Grants and funding

The authors received no specific funding for this work.