Altered susceptibility to air sampling stress by filtration is related to colistin resistance development in Acinetobacter baumannii

Indoor Air. 2018 Jun 26. doi: 10.1111/ina.12487. Online ahead of print.

Abstract

The accurate quantification of antibiotic-resistant bacteria in indoor air has recently attracted increasing attention. Here, we investigated whether the susceptibility of a nosocomial infection-related microbe, Acinetobacter baumannii, to strong sampling stress caused by Nuclepore filter changes as it develops resistance to a drug called colistin. Both colistin-sensitive A. baumannii (CSAB) and colistin-resistant A. baumannii (CRAB) are generally desiccation-resistant strains that can be collected by filter sampling. However, the resistance of CRAB to the three combined stresses (aerosolization, impaction, and desiccation) caused by filter sampling was 1.8 times lower than that of CSAB (P < 0.05). The sampling stresses caused by filter sampling not only reduced the culturability of A. baumannii but also destroyed proteins to result in cellular protein leakage. CRAB released 17%-38% more extracellular protein than did CSAB when they were both subjected to desiccation stress for 240 minutes (P < 0.01). The combination of using a sampling flow rate of 20 L/min and sampling for 60 minutes with a Nuclepore filter with open-face cassettes (OFCs) is recommended for collecting airborne A. baumannii. A Nuclepore filter operated with closed-face cassettes (CFCs) significantly decreased the culturability of CRAB due to desiccation effects.

Keywords: Acinetobacter baumannii; Nuclepore filter; air sampling; bioaerosol; colistin; filtration.