Synthetic Iron Oxides for Adsorptive Removal of Arsenic

Water Air Soil Pollut. 2018;229(6):203. doi: 10.1007/s11270-018-3866-2. Epub 2018 Jun 8.

Abstract

Removal of arsenic from water reservoirs is the issue of great concern in many places around the globe. As adsorption is one of the most efficient techniques for treatment of As-containing media, thus the present study concerns application of iron oxides-hydroxides (akaganeite) as adsorbents for removal of this harmful metal from aqueous solution. Two types of akaganeite were tested: synthetic one (A) and the same modified using hexadecyltrimethylammonium bromide (AM). Removal of As was tested in batch studies in function of pH, adsorbent dosage, contact time, and initial arsenic concentration. The adsorption isotherms obey Langmuir mathematical model. Adsorption kinetics complies with pseudo-second-order kinetic model, and the constant rates were defined as 2.07 × 10-3and 0.92 × 10-3 g mg-1 min-1 for the samples (A) and (AM), respectively. The difference was caused by significant decrease in adsorption rate in initial state of the process carried out for the sample AM. The maximum adsorption capacity achieved for (A) and (AM) akaganeite taken from Langmuir isotherm was 148.7 and 170.9 mg g-1, respectively. The results suggest that iron oxides-hydroxides can be used for As removal from aqueous solutions.

Keywords: Adsorption; Akaganeite; Arsenic contamination; Hexadecyltrimethylammonium bromide; Iron oxide; Kinetics; Pollution.