Deriving predicted no-effect concentrations (PNECs) for emerging contaminants in the river Po, Italy, using three approaches: Assessment factor, species sensitivity distribution and AQUATOX ecosystem modelling

Environ Int. 2018 Oct:119:66-78. doi: 10.1016/j.envint.2018.06.017. Epub 2018 Jun 20.

Abstract

Over the past decades, per- and polyfluoroalkyl substances (PFASs) found in environmental matrices worldwide have raised concerns due to their toxicity, ubiquity and persistence. A widespread pollution of groundwater and surface waters caused by PFASs in Northern Italy has been recently discovered, becoming a major environmental issue, also because the exact risk for humans and nature posed by this contamination is unclear. Here, the Po River in Northern Italy was selected as a study area to assess the ecological risk posed by perfluoroalkyl acids (PFAAs), a class of PFASs, considering the noticeable concentration of various PFAAs detected in the Po waters over the past years. Moreover, the Po has a large environmental and socio-economic importance: it is the largest Italian river and drains a densely inhabited, intensely cultivated and heavily industrialized watershed. Predicted no-effect concentrations (PNECs) were derived using two regulated methodologies, assessment factors (AFs) and species sensitivity distribution (SSD), which rely on published ecotoxicological laboratory tests. Results were compared to those of a novel methodology using the mechanistic ecosystem model AQUATOX to compute PNECs in an ecologically-sound manner, i.e. considering physical, chemical, biological and ecological processes in the river. The model was used to quantify how the biomasses of the modelled taxa in the river food web deviated from natural conditions due to varying inputs of the chemicals. PNEC for each chemical was defined as the lowest chemical concentration causing a non-negligible yearly biomass loss for a simulated taxon with respect to a control simulation. The investigated PFAAs were Perfluorooctanoic acid (PFOA) and Perfluorooctanesulfonic acid (PFOS) as long-chained compounds, and Perfluorobutanoic acid (PFBA) and Perfluorobutanesulfonic acid (PFBS) as short-chained homologues. Two emerging contaminants, Linear Alkylbenzene Sulfonate (LAS) and triclosan, were also studied to assess the performance of the three methodologies for chemicals whose ecotoxicology and environmental fate are well-studied. The most precautionary approach was the use of AFs generally followed by SSD and then AQUATOX, except for PFOS, for which AQUATOX yielded a much lower PNEC compared to the other approaches since, unlike the other two methodologies, it explicitly simulates sublethal toxicity and indirect ecological effects. Our findings highlight that neglecting the role of ecological processes when extrapolating from laboratory tests to ecosystems can result in under-protective threshold concentrations for chemicals. Ecosystem models can complement existing laboratory-based methodologies, and the use of multiple methods for deriving PNECs can help to clarify uncertainty in ecological risk estimates.

Keywords: AQUATOX; Assessment factor; Ecological modelling; Perfluoroalkyl acids; Predicted no-effect concentration; Species sensitivity distribution.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Ecotoxicology
  • Fluorocarbons* / analysis
  • Fluorocarbons* / toxicity
  • Food Chain*
  • Italy
  • Models, Biological
  • Rivers / chemistry*
  • Water Pollutants, Chemical* / analysis
  • Water Pollutants, Chemical* / toxicity

Substances

  • Fluorocarbons
  • Water Pollutants, Chemical