Cooperative bi-exponential decay of dye emission coupled via plasmons

Sci Rep. 2018 Jun 22;8(1):9508. doi: 10.1038/s41598-018-27901-4.

Abstract

Bi-exponential decay of dye fluorescence near the surface of plasmonic metamaterials and core-shell nanoparticles is shown to be an intrinsic property of the coupled system. Indeed, the Dicke, cooperative states involve two groups of transitions: super-radiant, from the most excited to the ground states and sub-radiant, which cannot reach the ground state. The relaxation in the sub-radiant system occurs mainly due to the interaction with the plasmon modes. Our theory shows that the relaxation leads to the population of the sub-radiant states by dephasing the super-radiant Dicke states giving rise to the bi-exponential decay in agreement with the experiments. We use a set of metamaterial samples consisting of gratings of paired silver nanostrips coated with Rh800 dye molecules, having resonances in the same spectral range. The bi-exponential decay is demonstrated for Au\SiO2\ATTO655 core-shell nanoparticles as well, which persists even when averaging over a broad range of the coupling parameter.