A rapid method for assessing the accumulation of microplastics in the sea surface microlayer (SML) of estuarine systems

Sci Rep. 2018 Jun 21;8(1):9428. doi: 10.1038/s41598-018-27612-w.

Abstract

Microplastics are an increasingly important contaminant in the marine environment. Depending on their composition and degree of biofouling, many common microplastics are less dense than seawater and so tend to float at or near the ocean surface. As such, they may exhibit high concentrations in the sea surface microlayer (SML - the upper 1-1000 μm of the ocean) relative to deeper water. This paper examines the accumulation of microplastics, in particular microfibres, in the SML in two contrasting estuarine systems - the Hamble estuary and the Beaulieu estuary, southern U.K., via a novel and rapid SML-selective sampling method using a dipped glass plate. Microplastic concentrations (for identified fibres, of 0.05 to 4.5 mm length) were highest in the SML-selective samples (with a mean concentration of 43 ± 36 fibres/L), compared to <5 fibres/L for surface and sub-surface bulk water samples. Data collected show the usefulness of the dipped glass plate method as a rapid and inexpensive tool for sampling SML-associated microplastics in estuaries, and indicate that microplastics preferentially accumulate at the SML in estuarine conditions (providing a potential transfer mechanism for incorporation into upper intertidal sinks). Fibres are present (and readily sampled) in both developed and more pristine estuarine systems.

Publication types

  • Research Support, Non-U.S. Gov't