Functional Multichannel Poly(Propylene Fumarate)-Collagen Scaffold with Collagen-Binding Neurotrophic Factor 3 Promotes Neural Regeneration After Transected Spinal Cord Injury

Adv Healthc Mater. 2018 Jul;7(14):e1800315. doi: 10.1002/adhm.201800315. Epub 2018 Jun 19.

Abstract

Many factors contribute to the poor axonal regrowth and ineffective functional recovery after spinal cord injury (SCI). Biomaterials have been used for SCI repair by promoting bridge formation and reconnecting the neural tissue at the lesion site. The mechanical properties of biomaterials are critical for successful design to ensure the stable support as soon as possible when compressed by the surrounding spine and musculature. Poly(propylene fumarate) (PPF) scaffolds with high mechanical strength have been shown to provide firm spatial maintenance and to promote repair of tissue defects. A multichannel PPF scaffold is combined with collagen biomaterial to build a novel biocompatible delivery system coated with neurotrophin-3 containing an engineered collagen-binding domain (CBD-NT3). The parallel-aligned multichannel structure of PPF scaffolds guide the direction of neural tissue regeneration across the lesion site and promote reestablishment of bridge connectivity. The combinatorial treatment consisting of PPF and collagen loaded with CBD-NT3 improves the inhibitory microenvironment, facilitates axonal and neuronal regeneration, survival of various types of functional neurons and remyelination and synapse formation of regenerated axons following SCI. This novel treatment strategy for SCI repair effectively promotes neural tissue regeneration after transected spinal injury by providing a regrowth-supportive microenvironment and eventually induces functional improvement.

Keywords: collagen; neural regeneration; poly(propylene fumarate) scaffolds; spinal cord injury; stereolithography.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Fumarates / chemistry*
  • Nerve Growth Factors / chemistry*
  • Nerve Regeneration / physiology*
  • Polypropylenes / chemistry*
  • Rats
  • Spinal Cord Injuries / therapy*
  • Tissue Engineering
  • Tissue Scaffolds / chemistry*

Substances

  • Fumarates
  • Nerve Growth Factors
  • Polypropylenes
  • poly(propylene fumarate)