Thermoelectric Performance of Sb2Te3-Based Alloys is Improved by Introducing PN Junctions

ACS Appl Mater Interfaces. 2018 Jul 11;10(27):23277-23284. doi: 10.1021/acsami.8b01719. Epub 2018 Jun 27.

Abstract

Interface engineering has been demonstrated to be an effective strategy for enhancing the thermoelectric (TE) performance of materials. However, a very typical interface in semiconductors, that is, the PN junction (PNJ), is scarcely adopted by the thermoelectrical community because of the coexistence of holes and electrons. Interestingly, our explorative results provide a definitively positive case that appropriate PNJs are able to enhance the TE performance of p-type Sb2Te3-based alloys. Specifically, owing to the formation of the charge-depletion layer and built-in electric field, the carrier concentration and transport can be optimized and thus the power factor is improved and the electronic thermal conductivity is decreased. Meanwhile, PNJs provide scattering centers for phonons, leading to a reduced lattice thermal conductivity. Consequently, the p-type (Bi2Te3)0.15-(Sb2Te3)0.85 composites comprising PNJs achieve a ∼131% improvement of the ZT value compared with the pure Sb2Te3. The increased ZT demonstrates the feasibility of improving the TE properties by introducing PNJs, which will open a new and effective avenue for designing TE alloys with high performance.

Keywords: PN junction; interface engineering; p-type Sb2Te3; thermoelectric material; thermoelectric performance.