Effect of Rare Earth Elements on the Morphology of Eutectic Carbides in AISI D2 Tool Steels: Experimental and Modelling Approaches

Sci Rep. 2018 Jun 18;8(1):9233. doi: 10.1038/s41598-018-27658-w.

Abstract

The morphology of the eutectic chromium carbides in the microstructure of as-cast AISI D2 tool steel was modified by adding small amounts of rare-earth elements (REEs) to the melt. As a result of these REE additions the eutectic carbide morphological type was changed from lamellar to globular. Similar phenomena have already been reported for various tool steels, but no complete theoretical explanation has been provided. Here, we propose a new model that is derived from first-principles thermodynamic calculations based on the phase-field modeling of the eutectic reaction. Using this new approach, where the decomposition of the phase-boundary surface-energy term is divided into the isotropic and anisotropic parts, we were able to account for the transition from a lamellar to a globular eutectic morphology in REE-modified AISI D2 tool steel.