RF coils: A practical guide for nonphysicists

J Magn Reson Imaging. 2018 Jun 13;48(3):590-604. doi: 10.1002/jmri.26187. Online ahead of print.

Abstract

Radiofrequency (RF) coils are an essential MRI hardware component. They directly impact the spatial and temporal resolution, sensitivity, and uniformity in MRI. Advances in RF hardware have resulted in a variety of designs optimized for specific clinical applications. RF coils are the "antennas" of the MRI system and have two functions: first, to excite the magnetization by broadcasting the RF power (Tx-Coil) and second to receive the signal from the excited spins (Rx-Coil). Transmit RF Coils emit magnetic field pulses ( B1+) to rotate the net magnetization away from its alignment with the main magnetic field (B0 ), resulting in a transverse precessing magnetization. Due to the precession around the static main magnetic field, the magnetic flux in the receive RF Coil ( B1-) changes, which generates a current I. This signal is "picked-up" by an antenna and preamplified, usually mixed down to a lower frequency, digitized, and processed by a computer to finally reconstruct an image or a spectrum. Transmit and receive functionality can be combined in one RF Coil (Tx/Rx Coils). This review looks at the fundamental principles of an MRI RF coil from the perspective of clinicians and MR technicians and summarizes the current advances and developments in technology.

Level of evidence: 1 Technical Efficacy: Stage 6.

Keywords: RF coil; arrays; clinical application; coil array design; novel RF coils; signal-to-noise ratio.

Publication types

  • Review