Nanometer Scale Confined Growth of Single-Crystalline Gold Nanowires via Photocatalytic Reduction

ACS Appl Mater Interfaces. 2018 Jun 20;10(24):20929-20937. doi: 10.1021/acsami.8b02473. Epub 2018 Jun 8.

Abstract

Single-crystalline gold nanowires (Au NWs) are directly synthesized by the photocatalytic reduction of an aqueous HAuCl4 solution inside high-aspect-ratio TiO2 nanotubes (NTs). Crystalline TiO2 (anatase) NTs are prepared by the template-assisted atomic layer deposition technique with a subsequent annealing. Under the irradiation of ultraviolet light, photoexcited electrons are formed on the surfaces of TiO2 NTs and could reduce Au ions to create nuclei without using any surfactant, reducing agent, and/or seed. Once nucleation occurred, high-aspect-ratio Au NWs are grown inside the TiO2 NTs in a diffusion-controlled manner. As the solution pH increased, the nucleation/growth rate decreased and twin-free (or not observed), single-crystalline Au NWs are formed. At a pH above 6, the nucleation/growth rates increased and Au nanoparticles are observed both inside and outside of the TiO2 NTs. The confined nanoscale geometries of the interior of the TiO2 NTs are found to play a key role in the controlled diffusion of Au species and in determining the crystal morphology of the resulting Au NWs.

Keywords: confined growth; gold nanowire; photocatalytic reduction; single crystalline; titanium dioxide nanotube.