Cardiomyocyte-specific disruption of Cathepsin K protects against doxorubicin-induced cardiotoxicity

Cell Death Dis. 2018 Jun 7;9(6):692. doi: 10.1038/s41419-018-0727-2.

Abstract

The lysosomal cysteine protease Cathepsin K is elevated in humans and animal models of heart failure. Our recent studies show that whole-body deletion of Cathepsin K protects mice against cardiac dysfunction. Whether this is attributable to a direct effect on cardiomyocytes or is a consequence of the global metabolic alterations associated with Cathepsin K deletion is unknown. To determine the role of Cathepsin K in cardiomyocytes, we developed a cardiomyocyte-specific Cathepsin K-deficient mouse model and tested the hypothesis that ablation of Cathepsin K in cardiomyocytes would ameliorate the cardiotoxic side-effects of the anticancer drug doxorubicin. We used an α-myosin heavy chain promoter to drive expression of Cre, which resulted in over 80% reduction in protein and mRNA levels of cardiac Cathepsin K at baseline. Four-month-old control (Myh-Cre-; Ctsk fl/fl) and Cathepsin K knockout (Myh-Cre+; Ctsk fl/fl) mice received intraperitoneal injections of doxorubicin or vehicle, 1 week following which, body and tissue weight, echocardiographic properties, cardiomyocyte contractile function and Ca2+-handling were evaluated. Control mice treated with doxorubicin exhibited a marked increase in cardiac Cathepsin K, which was associated with an impairment in cardiac structure and function, evidenced as an increase in end-systolic and end-diastolic diameters, decreased fractional shortening and wall thickness, disruption in cardiac sarcomere and microfilaments and impaired intracellular Ca2+ homeostasis. In contrast, the aforementioned cardiotoxic effects of doxorubicin were attenuated or reversed in mice lacking cardiac Cathepsin K. Mechanistically, Cathepsin K-deficiency reconciled the disturbance in cardiac energy homeostasis and attenuated NF-κB signaling and apoptosis to ameliorate doxorubicin-induced cardiotoxicity. Cathepsin K may represent a viable drug target to treat cardiac disease.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis
  • Calcium / metabolism
  • Cardiotonic Agents / metabolism*
  • Cardiotoxicity / diagnostic imaging
  • Cardiotoxicity / pathology
  • Cardiotoxicity / prevention & control*
  • Cathepsin K / metabolism*
  • Cell Survival
  • Doxorubicin / adverse effects*
  • Fibrosis
  • Inflammation / pathology
  • Male
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Myocytes, Cardiac / metabolism*
  • Myocytes, Cardiac / pathology
  • Organ Specificity
  • Signal Transduction

Substances

  • Cardiotonic Agents
  • Doxorubicin
  • Cathepsin K
  • Calcium