Beating the classical precision limit with spin-1 Dicke states of more than 10,000 atoms

Proc Natl Acad Sci U S A. 2018 Jun 19;115(25):6381-6385. doi: 10.1073/pnas.1715105115. Epub 2018 Jun 1.

Abstract

Interferometry is a paradigm for most precision measurements. Using N uncorrelated particles, the achievable precision for a two-mode (two-path) interferometer is bounded by the standard quantum limit (SQL), [Formula: see text], due to the discrete (quanta) nature of individual measurements. Despite being a challenging benchmark, the two-mode SQL has been approached in a number of systems, including the Laser Interferometer Gravitational-Wave Observatory and today's best atomic clocks. For multimode interferometry, the SQL becomes [Formula: see text] using M modes. Higher precision can also be achieved using entangled particles such that quantum noises from individual particles cancel out. In this work, we demonstrate an interferometric precision of [Formula: see text] dB beyond the three-mode SQL, using balanced spin-1 (three-mode) Dicke states containing thousands of entangled atoms. The input quantum states are deterministically generated by controlled quantum phase transition and exhibit close to ideal quality. Our work shines light on the pursuit of quantum metrology beyond SQL.

Keywords: quantum entanglement; spin-1 Dicke state; spinor Bose–Einstein condensate; standard quantum limit; three-mode interferometry.

Publication types

  • Research Support, Non-U.S. Gov't