(9R)-9-Hydroxystearate-Functionalized Anticancer Ceramics Promote Loading of Silver Nanoparticles

Nanomaterials (Basel). 2018 May 31;8(6):390. doi: 10.3390/nano8060390.

Abstract

Functionalization of calcium phosphates for biomedical applications has been proposed as a strategy to enrich the good osteoinductive properties of these materials with specific therapeutic characteristics. Herein, we prepared and characterized hydroxyapatite nanocrystals functionalized with an anticancer agent, (9R)-9-hydroxystearate (HSA), and loaded with an antimicrobial agent, namely silver nanoparticles (AgNPs). Nanocrystals at two different contents of HSA, about 4 and 9 wt %, were prepared via direct synthesis in aqueous solution. Loading with the antibacterial agent was achieved through interaction with different volumes of AgNPs suspensions. The amount of loaded nanoparticles increases with the volume of the AgNPs suspension and with the hydroxystearate content of the nanocrystals, up to about 3.3 wt %. The structural, morphological, and hydrophobic properties of the composite materials depend on hydroxystearate content, whereas they are not affected by AgNPs loading. At variance, the values of zeta potential slightly increase with the content of AgNPs, which exhibit a sustained release in cell culture medium.

Keywords: X-ray diffraction; biomaterial; ceramic; hydroxyapatite; nanoparticles; silver; transmission electron microscopy.