The association of polymorphisms in folate-metabolizing genes with response to adjuvant chemotherapy of colorectal cancer

Cancer Chemother Pharmacol. 2018 Aug;82(2):237-243. doi: 10.1007/s00280-018-3608-6. Epub 2018 May 29.

Abstract

Background: Colorectal cancer (CRC) is one of the major health issues worldwide. 5-Fluorouracil (5-FU) is a cornerstone of chemotherapy for CRC and the major targets of 5-FU are folate-metabolizing enzymes.

Methods: A total of 103 CRC patients with complete clinical data were included in this prospective cohort study. Genotyping was performed using polymerase chain reaction (PCR) followed by sequencing. Using Kaplan-Meier curves, log-rank tests, and Cox proportional hazard models, we evaluated associations between functional polymorphisms in four genes MTHFR (1298A>C and 677C>T), DPYD (496A>G and 85T>C), DHFR 19 bp del, and MTR (2756 A>G) with disease-free survival (DFS).

Results: The minor allele frequencies of MTHFR 1298A>C, MTHFR 677C>T, DPYD 496A>G, DPYD 85T>C, DHFR 19 bp del, and MTR 2756 A>G were 0.364, 0.214, 0.116, 0.209, 0.383, and 0.097, respectively. CRC patients carrying the homozygous GG genotype in DPYD 496A>G had 4.36 times shorter DFS than wild-type AA carriers, (DFSGG vs AA: 8.0 ± 4 vs 69.0 ± 10 months; HR 4.36, 95% CI 1.04-18; p = 0.04). Moreover, female carriers of homozygous CC genotype of DPYD 85T>C had shorter DFS compared to either heterozygous or wild-type genotypes, and were 12.7 times shorter than wild-type TT carriers (DFSCC vs TT: 5.0 ± 1.5 vs 42.0 ± 7.6 months; HR 12.7, 95% CI 2.2-71.4; p = 0.004). However, there were no significant associations with the other studied polymorphisms.

Conclusion: Genetic polymorphism in DPYD seems to be associated with DFS in CRC patients receiving an adjuvant regimen of 5-FU/capecitabine-based chemotherapy. Further studies are needed to verify these findings.

Keywords: Chemotherapy; Colorectal cancer; Folate pathway; Polymorphism.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase / genetics
  • 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase / metabolism
  • Adult
  • Aged
  • Antineoplastic Combined Chemotherapy Protocols / therapeutic use*
  • Capecitabine / administration & dosage
  • Chemotherapy, Adjuvant
  • Colorectal Neoplasms / drug therapy*
  • Colorectal Neoplasms / enzymology
  • Colorectal Neoplasms / genetics*
  • Colorectal Neoplasms / metabolism
  • Dihydrouracil Dehydrogenase (NADP) / genetics
  • Dihydrouracil Dehydrogenase (NADP) / metabolism
  • Female
  • Fluorouracil / administration & dosage
  • Folic Acid / metabolism*
  • Humans
  • Male
  • Methylenetetrahydrofolate Reductase (NADPH2) / genetics
  • Methylenetetrahydrofolate Reductase (NADPH2) / metabolism
  • Middle Aged
  • Polymorphism, Single Nucleotide
  • Tetrahydrofolate Dehydrogenase / genetics
  • Tetrahydrofolate Dehydrogenase / metabolism
  • Young Adult

Substances

  • Capecitabine
  • Folic Acid
  • Dihydrouracil Dehydrogenase (NADP)
  • MTHFR protein, human
  • Methylenetetrahydrofolate Reductase (NADPH2)
  • Tetrahydrofolate Dehydrogenase
  • 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase
  • Fluorouracil