Comments to: A Novel Low-Cost Instrumentation System for Measuring the Water Content and Apparent Electrical Conductivity of Soils, Sensors, 15, 25546⁻25563

Sensors (Basel). 2018 May 28;18(6):1730. doi: 10.3390/s18061730.

Abstract

The article comments on claims made by Rêgo et al. about the sensor they developed to determine soil water content and its salinity via the admittance measurement of electrodes embedded in the soil. Their sensor is not based on a self-balanced bridge, as stated, but on a more common technique relying on Ohm's law. A bridge is a zero method of measurement which can provide direct voltages proportional to soil permittivity and conductivity with a high resolution. Thanks to modern electronics the method can be adapted for fast and continuous monitoring in a remote site. Because of this confusion about the different measurement techniques among available admittance or capacitance sensors, we give a succinct review of them and indicate how they compare to the two techniques under discussion. We also question the ability of Rêgo et al.'s current sensor to determine both soil water content and salinity due first to instrument biases and then to the soil complexity as a dielectric medium. In particular, the choice of sensor frequencies is crucial in the two steps. In addition, the procedure to determine and account for temperature influences on readings is not presented clearly enough. It is important to distinguish between the effect resulting from electronics sensitivity, and those that are soil-specific. The comment does not invalidate the design of the sensor, but indicates points, especially parasitic contributions, which must be dealt with to avoid major errors.

Keywords: Ohm’s law; electrode admittance; permittivity measurement; self-balanced bridge; soil moisture and salinity.